

Tentamen Numerieke Wiskunde 2 14 november 2001

Duration: 3 hours

N.B. Unless stated otherwise, the notation used is as in the book of Burden and Faires.

Problem 1

Consider the ordinary differential equation: y' = f(t, y).

a. Show how the explicit midpoint method given by

$$w_{i+1} = w_{i-1} + 2hf(t_i, w_i)$$

can be derived from an integral equation related to the ordinary differential equation. Use this to show that the method has local truncation error $O(h^2)$.

- b. Describe the root condition. Does the explicit midpoint method satisfy this condition? What is the consequence if a method satisfies the root condition?
- c. The characteristic polynomial related to the explicit midpoint method has two roots $\beta_k(h\lambda)$, k=1,2. Given that at least one of these roots is in magnitude larger than one for $h\lambda$ away from the imaginary axes, show that $|\beta_1(h\lambda)| = |\beta_2(h\lambda)| = 1$ for $h\lambda$ on the interval [-i,i] on the imaginary axes.

Problem 2

Consider the wave equation

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$$

for x on [0,1] and $t \ge 0$ with u(0,t) = u(1,t) = 0 and appropriate initial conditions.

a. Show that a semi-discretization (discretization in space only) of the wave equation is given by the system of ordinary differential equations

$$\frac{d^2v}{dt^2}=Bv,$$

where

$$(Bv)_1 = 4(v_2 - 2v_1)/h^2,$$

 $(Bv)_j = 4(v_{j+1} - 2v_j + v_{j-1})/h^2 \text{ for } j = 2, ..., m-2,$
 $(Bv)_{m-1} = 4(-2v_{m-1} + v_{m-2})/h^2$

with h = 1/m, and m a natural number. What is the local truncation error?

b. Locate the eigenvalues of the matrix B defined in part a by Gerschgorin's theorem.

c. Show that the system in part a can be converted to the first-order system of ordinary differential equations

$$\frac{dy}{dt} = Cy$$

with

$$C = \left[\begin{array}{cc} 0 & I \\ B & 0 \end{array} \right]$$

- d. Show that the eigenvalues of C defined in part c are located on the interval [-4i/h, 4i/h] on the imaginary axis. (hint: there are basically two ways: (i) show that C is similar to a skew-symmetric matrix, or (ii) use Gaussian elimination on the eigenvalue equation $(C \lambda I)x = 0$ assuming that λ is nonzero.)
- e. Can the explicit midpoint method given in part a of Problem 1 be applied to this system and, if yes, what is the restriction on the time step?

Problem 3

Consider the system Ax = b, with b known and A a tridiagonal matrix of order n with on the main diagonal the value 3, and on the lower and upper diagonal the value -1. So for n = 4

$$A = \left[\begin{array}{rrrr} 3 & -1 & & \\ -1 & 3 & -1 & \\ & -1 & 3 & -1 \\ & & -1 & 3 \end{array} \right]$$

- a. Show that A is strictly diagonally dominant.
- b. Use Gershgorin's theorem to estimate the condition number of A.
- c. Let $A^{(0)} = A$ and $A^{(1)}, A^{(2)}, ..., A^{(n-1)}$ be the submatrices generated by the Gaussian elimination process. Show, in the case that no pivoting is applied, that if $A^{(i)}$ is strictly diagonally dominant then also $A^{(i+1)}$ is. What does this mean for the stable solution of the associated system?
- d. Describe the application of the Jacobi method to the above system.
- e. Show that the Jacobi method converges for the above system and give an estimate for the convergence rate.

Problem 4

Assume A is an $n \times n$ full symmetric matrix. Describe the ingredients for an efficient computation of all eigenvalues of this matrix by the QR algorithm.